

Technical Specification and Operating Procedure

PILATUS 1M Detector System

Table of Contents

1	[DOCUMENT HISTORY	3
	1.1	1 Changes	3
2	H	HOW TO USE THIS TECHNICAL SPECIFICATION	N4
	2.1	1 Address and Support	4
	2.2		5
	2.3		5
	2.4	4 USE OF THE PILATUS 1M	5
3	1	TECHNICAL SPECIFICATION	6
	3.1	1 Ratings	7
	3.2	2 Ambient Conditions	8
4		DIMENSIONS AND CONNECTORS	9
	4.1	1 PILATUS 1M DETECTOR	10
	4	4.1.1 Front Side of the Detector	
	4	4.1.2 Backside of the Detector	
	4	4.1.3 The status LEDs	
	4		Pipes13
	4.2	2 COMPUTER	15
	4.3	3 COOLING UNIT	16
5	ı	INSTALLING THE DETECTOR SYSTEM	17
	5.1		17
	5.2		19
	5		
	5	<u> </u>	20
	5.3		21
	5.4		22
	5.5	5 CONNECTING THE CABLES	23
6			24
7	(GETTING STARTED	26
	7.1	STARTUP SEQUENCE	26
	7.2	FIRST COMMANDS	27
8	1	TURNING OFF THE DETECTOR	28
9	9	STORING THE DETECTOR	28
10) (CLEANING AND MAINTENANCE	29
11	. F	FAULTS	30
12		CERTIFICATION TESTS	31

1 Document History

Actual document

Version	Date	status	prepared	checked	released
1.7	22.07.2011	released	PS,BS	SC, DB	SB

1.1 Changes

Version	Date	Changes	released
1.0	02.06.2009		PS
1.4	29.01.2010	Connection cables and temperature sensors	SB
1.4.1	18.02.2010	Signal levels	SB
1.4.2	19.02.2010	Power input	SB
1.5	09.04.2010	Dimensions and grounding	SB
1.5.1	21.04.2010	Power supply description	SB
1.5.2	28.05.2010	Dimensions	SB
1.6	04.10.2010	Pictures	SB
1.7	22.07.2011	Thicker sensors and conformity with standards	SB

2 How to use this Technical Specification

Before you start to operate the PILATUS 1M detector system please read this technical specification and the user manual thoroughly.

The technical specification and the user manual together form the user documentation.

2.1 Address and Support

DECTRIS Ltd.
Neuenhoferstrasse 107
5400 Baden
Switzerland
Phone: +41 56 500 21 00

Fax: + 41 56 500 21 00

Email: support@dectris.com

Should you have questions concerning the system or its use, please contact us via phone, mail or fax.

Before you ship the system back, please contact us to receive the necessary transport and shipping information.

2.2 Explanation of Symbols

Symbol	Description
i	Important or helpful notice
\triangle	Caution. Please follow the instructions carefully to prevent equipment damage or personal injury.
===	DC-current
\sim	AC-current
<u></u>	Ground

2.3 Explanation of Terms

Term	Description
MCB	Module Control Board
DCB	Detector Control Board
DAC	Digital to Analog Converter

2.4 Use of the PILATUS 1M

The PILATUS 1M detector system has been designed for the detection of X-rays from synchrotrons or laboratory sources.

It is intended for indoor use only.

For other applications, please contact DECTRIS for additional information.

Do not use the detector in vacuum

The PC can be mounted in a standard 19 inch rack, which has to be properly grounded.

Make sure that the PC has adequate ventilation.

3 Technical specification

Number of modules	2 x 5 = 10
Sensor	Reverse-biased silicon diode array
Sensor thickness	320 μm 450 μm
	3 keV: 48% 3 keV: 48%
	8 keV: 95% 8 keV: 96%
	15 keV: 51% 15 keV: 64%
Pixel size	172 x 172 μm ²
Module size	83.8 x 33.5 mm ²
Format	981 x 1043 = 1'023'183 pixels
Area	169 x 179 mm ²
Intermodule gap	x: 7 pixels, y: 17 pixels, 8.4% of total area
Dynamic range	20 Bits = 1'048'576
Counting rate per pixel	> 2x10 ⁶ X-ray/sec
Energy range	4.5 – 36 keV
Energy resolution	500 eV
Adjustable threshold range	4 - 18 keV
Threshold dispersion	50 eV
Readout time	2.3 ms
Framing rate	30 Hz
Point-spread function	1 pixel
Data formats	Raw data, TIF, EDF, CBF
External trigger/gate	3.3 – 5V, 3 different modes
Software interface	Through socket connection;
	Clients for EPICS, SPEC and stand-alone
	operation are available
Cooling	Water-cooled
Operating temperature (internal)	23°C
Dimensions (W x H x D)	325 x 336 x 458 mm ³
Weight	Approx. 25 kg

Device	Definition
Detector Power Input	100 - 240 VAC, 50-60 Hz, 120 Watt Can be connected to all common supply voltages.
Detector External Trigger Input	2.0 V - 5.0 V High level 0.0 V - 0.8 V Low level 50 Ohm Impedance Trigger Signal to internal circuit 5.0 V absolute maximum Applying a higher voltage will destroy the input.
Detector Enable output	5 V TTL (max. 100 mA)
PC	100 - 240 VAC; 12 A 50/60 Hz 870 Watt Hot-Plug Power Supplies Can be connected to all common supply voltages.
Cooling unit	230V, 50Hz Power Input: 2000W Flow: 14 I/min Pressure: 0.5 bar

3.2 Ambient Conditions

The PILATUS 1M detector is designed only for indoor use. The following ambient conditions must be fulfilled:

Condition	Range
Operating temperature:	+20° to +35° C
Operating humidity:	80% at 20° C, non-condensing
Storage temperature	+15° to +40° C
Storage humidity	< 40% at 20° C, non-condensing

Note that the interior humidity under operating conditions must be < 25%, see section 6.

When storing the detector make sure the temperature and humidity inside the transport box doesn't exceed the specified range. Use drying agent.

If the detector system is stored at low temperature, make sure that no condensation moisture develops.

The PILATUS 1M is equipped with a temperature and humidity control, see section 6.

4 Dimensions and Connectors

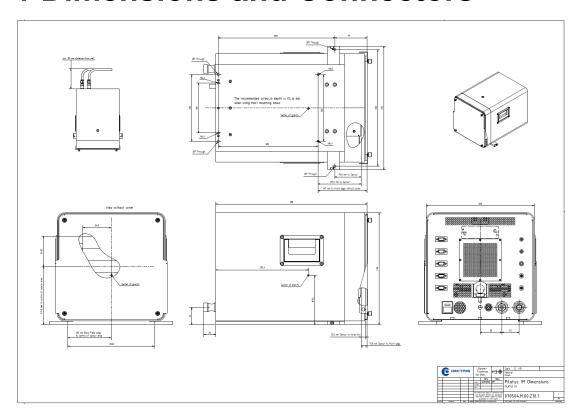


Figure 1. Drawing of the PILATUS 1M detector (printed separately in the user documentation folder)

4.1 Pilatus 1M Detector

4.1.1 Front Side of the Detector

The detector comes with a protective cover (1.4 mm, low carbon steel sheet metal 1.0330, St12) for the front window which should be removed for operation. The sensors are behind a 12 μ m thick Mylar ® (PET) foil coated with 100 nm aluminum to protect it from dust and touch.

The cover has a mounting edge on top and can be removed by carefully pulling at the bottom and lifting it away.

When mounting the cover, make sure it is first hooked on the mounting edge centered and then slowly lowered.

Do not touch the Mylar ® foil.

The cover may not protect the detector from direct synchrotron

Figure 2. PILATUS 1M detector with cover in place (front view)

Figure 3. PILATUS 1M detector with cover removed (front view)

4.1.2 Backside of the Detector

Figure 4. PILATUS 1M detector viewed from the back

4.1.3 The status LEDs

LED	Description
Power	If green, all supply voltages are ok.
	If red, module power is off.
	This can be caused by over/under temperature, too
	much humidity or too high module current (One or more
	modules may come into oscillations, see section 11).
Temp	Normally green. Turns red when the detector
	temperature or humidity is out of the limits (see section
	6).
EN	Yellow, detector is making an exposure.

4.1.4 Connectors and Connecting Cables/Pipes

Connector	Description
DATA 1 (D1)	Data connection 1
	Cable:
	Use only the included cable. Custom made cables or
	connectors will not work.
	Minimum bending radius in a fix installation: 5
	times the cable diameter. Minimum bending radius in a
	flexible installation: 15 times the cable diameter.
	Details of pins:
	Data in/out 9 Pol Sub-D PCI-Karte Rx
	9 Pol Sub-D Pin 5 in, Pin 9 GND
	Pin 1: Rx In
	Pin 5: RX nut Pin 6: Rx ln (GND) Pin 9: Tx Out (GND) Pin 9: Tx Out (GND)
Power	Main voltage 100 – 240 VAC; 50/60 Hz, Fuse 6.3A
	UL recognized to UL 60950/CSA 22.2 No. 60950-00, and
	TUV approved to EN 60950-1
	Cable:
	Power cable with an IEC/C13 connector.
EXT IN	External Trigger Input
	Use a Lemo ® Type 00 (NIM-CAMAC) cable.
	For ratings see 3.1
	J. J
EN OUT	TTL output signal; high when counting is enabled.
	Use a Lemo ® Type 00 (NIM-CAMAC) cable.
	,
	For ratings see 3.1

Connector	Description
Ground	Although the detector might be grounded via the mounting bolts, the detector can be grounded additionally via the functional ground connector at the back (M6 screw-in tap hole) to establish a defined grounding.
N2	Nitrogen for humidity control. For details see section 5.4. Pipe: Use a pipe with outer diameter of 6 mm and an inner diameter of 4 mm (e.g: Legris Type 1025U06).
Di-H2O	Use deionized water for cooling. Pipes: Use for inlet and outlet a pipe with an inner diameter of 9 mm.

The fixation pieces and the transport hook are stored on the back of the detector.

4.2 Computer

The computer is a high power server with a proprietary data acquisition card to communicate with the detector.

The PC should be kept behind a firewall and should not have outside internet access.

The operating system is optimized for high speed data acquisition and has a custom kernel: Therefore, do not permit any software upgrades on the kernel!

Do not install or run any other software on the computer, except as tools and software necessary to configure your data acquisition protocol.

Figure 5. Connectors at the PCI Mezzanine Card for data acquisition

Connector	Description
RX	Receive data
TX	Transmit data

4.3 Cooling Unit

The PILATUS 1M detector system is equipped with a cooling unit for temperature stabilization of the detector head.

The tubes and the detector are equipped with self-sealing valves to avoid dripping when connecting or disconnecting the tubes. There is no fixed limitation on the length of the tubing.

Figure 6. Connection for cooling tubes on the Pilatus 1M detector

Before operating the cooling unit, please read the user manual of the cooling unit.

When connecting or disconnecting the cooling hoses, turn off the detector and the cooling unit.

When operating the detector, the cooling unit must be always on.

Use opaque tubing to avoid the growth of algae.

Operating	The cooling unit has always to be set to a temperature of
temperature	23°C.
Operating	0.5 bar
pressure	

Do not set the temperature of the cooling unit below the recommended operating temperature. Condensing moisture can develop and damage the detector.

5 Installing the Detector System

5.1 Carrying

The detector has been delivered in a robust transport box. Please keep this transport box for transport or storage purpose.

The detector has a transport hook which has to be used for carrying the detector.

Figure 7. PILATUS 1M with mounted transport hook

Only use an appropriate lifting device with a carrying capacity of at least 25 kg to move the detector

The handles on the side of the detector are only for positioning not for lifting.

Make sure the detector is always moved by 2 persons

When using the transport hook, make sure it is properly tightened

When moving the detector, make sure the protection cover is mounted

Figure 8. The transport hook and the fixation pieces are stored at the back of the detector

5.2 Mounting

The detector can be mounted in two ways:

5.2.1 Mounting from Above

Use the detachable mounting pieces, which are stored on the back of the detector. These mounting pieces have to be mounted on the base plate of the detector.

Make sure the mounting pieces are mounted and properly tightened

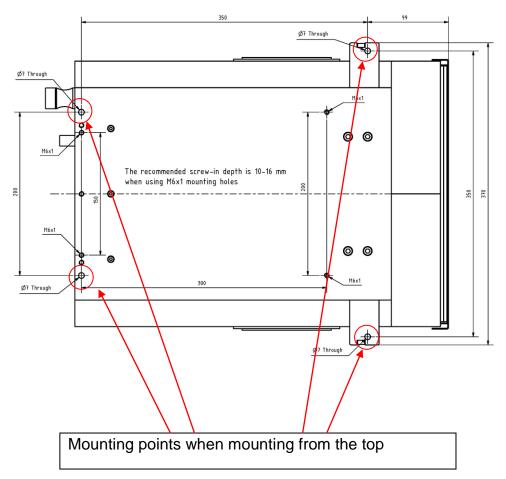


Figure 9. Mounting from above, bottom view

5.2.2 Mounting from Below

From below with four M6 bolts.

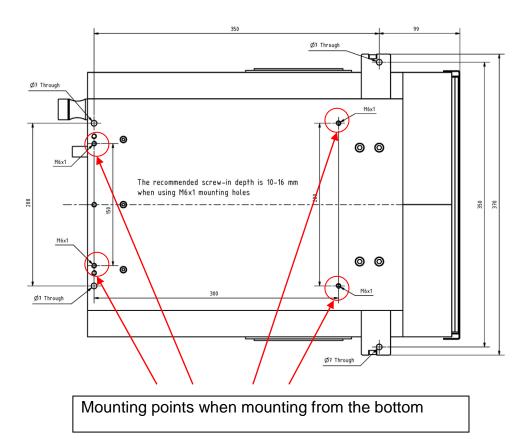


Figure 10. Mounting from below, bottom view

The four M6 bolts should not intrude into the detector more than 16

mm.

Make sure the detector is properly mounted.

Make sure the detector has enough space for proper ventilation (minimum wall distance: 170 mm). Do not operate the detector in a closed environment.

5.3 Grounding of the Detector System

The main plug of the computer and the power supply of the detector have to be connected to a grounded power outlet.

Although the detector might be grounded via the mounting bolts, the detector can be grounded additionally via the functional ground connector at the back (M6 screw-in tap hole) to establish a defined grounding.

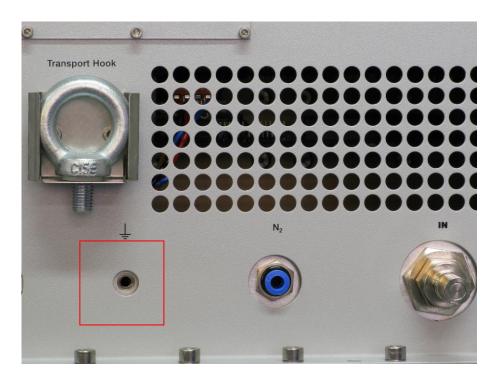


Figure 11. Ground connector on the back of the detector

5.4 Connection to Nitrogen or Dry Air

The PILATUS detector has to be connected to a nitrogen or dry air flow to avoid humidity and condensation when it is outside the storage box. For storage see section 9.

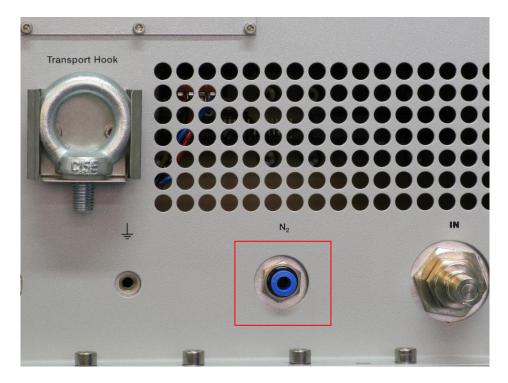


Figure 12. Nitrogen connector on the back of the detector

Humidity can damage the detector. Make sure that the detector is operated in the specified range.

Recommended	5-10 liter/h.
flow of nitrogen	
As alternative	Oil free, dry air of < 2% relative humidity can be used.
	Recommended flow: 5-10 liter/h.
Gas pressure	Minimum 1 bar
-	Maximum 2 bar

5.5 Connecting the Cables

To operate the detector, the data cables and the ground should be connected. For specification of cables and pipes see section 4.1.4.

The PILATUS 1M detector is equipped with one data cable.

Connect RX to RX and TX to TX on the GigaSTaR Card in the PC. Labels for the connections are printed on the server housing. The single connectors go to the corresponding connector on the back of the detector.

The data cable should be pulled onto the computer connectors with the screws, rather than forcefully pushed on.
A forceful connection can damage the PCI card.

It is important for data integrity that the screws are tightened.

To plug or unplug any cables, turn the detector off.

6 Temperature and Humidity Control

The PILATUS 1M detector head has 3 combined temperature and humidity sensors.

The temperature and humidity control shuts down the power of the detector modules when the humidity or the temperature of the different sensors exceeds or falls below the following limits:

Channel	Location	Shutdown Temperature °C		Shutdown Humidity %
		Low limit	High limit	
0	Power board	15	55	80%
1	Base plate	15	35	80%
2	Detector head	15	45	30%
				For startup, the humidity
				has to be below 25%

The fan and the communication with the PC will remain active after a temperature shut down (only shuts down the power of the modules).

To start the detector correctly, please refer to section 7.1 and execute the correct startup procedure.

If the humidity is outside the specified range, the software will prevent powering up the modules and exit with a corresponding message.

```
BCB design frequency = 67 MHz

PMC GigaSTaR device #0: BCB 6 Hardware/Firmware version: 0x1231

PMC GigaSTaR device #0: BCB 6 Firmware build: 0x1ae8

BCB design frequency = 67 MHz

BCB #0: BCB DOUT sampling delays (software) set to 0x1c

3 Temperature / Humidity sensor(s) enabled on DCB 0

*** ERROR - Rel. Humidity (26.4%, channel 2) is too high

Bad return from dcb_initialize()

Camera initialization error -- press <enter> to exit
```

Figure 13. Error message when temperature or humidity is out of range

Make sure that Nitrogen or dry air flow is turned on at the recommended flow rate (according to section 5.4) and then restart the software.


```
camserver @
                                                                                          Set B15_M7_vcmp4 0.7000 Setting B**_M**_VCMP4 voltage to integer: 0x11f = "0.699V"
  Set B15_M7_vcmp5 0.7000
Setting B**_M**_VCMP5 voltage to integer: 0x11f = "0.699V
* Set B15_M7_vcmp6 0.7000
  Setting B**_M**_VCMP6 voltage to integer: 0x11f = "0.699V
* Set B15_M7_vcmp7 0.7000
Setting B**_M**_VCMP7 voltage to integer: 0x11f = ~0.699V
* Set B15_M7_vcmp8 0.7000
 Setting B**_M**_VCMP8 voltage to integer: 0x11f = "0.699V
* Set B15_M7_vcmp9 0.7000
Setting B**_M**_VCMP9 voltage to integer: 0x11f = ~0.699V
* Set B15_M7_vcmp10 0.7000
  Setting B**_M**_VCMP10 voltage to integer: 0x11f = "0.699V
* Set B15_M7_vcmp11 0.7000
Setting B**_M**_VCMP11 voltage to integer: 0x11f = ~0.699V
* Set B15_M7_vcmp12 0.7000
  Setting B**_M**_VCMP12 voltage to integer: 0x11f = ~0.699V
* Set B15_M7_vcmp13 0.7000
Setting B**_M**_VCMP13 voltage to integer: 0x11f = ~0.699V
* Set B15_M7_vcmp14 0.7000
Setting B**_M**_VCMP14 voltage to integer: 0x11f = ~0.699V

* Set B15_M7_vcmp15 0.7000

Setting B**_M**_VCMP15 voltage to integer: 0x11f = ~0.699V
* Set B15_M7_vadj 1.15
  Setting B**_M**_VADJ voltage to integer: 0x320 = "1.150V
* imgmode p
* fillpix 0x9d367
* imgonly /home/det/p2_det/images/image_00110.tif
* imgmode p
 calibrate
* imgonly /home/det/p2_det/images/image_00111.tif
* gapfill -1
Set detector gap-fill to: -1
* imgmode x
Channel 0: Temperature = 26.8C, Rel. Humidity = 41.9%
Channel 1: Temperature = 26.6C, Rel. Humidity = 44.5%
Channel 2: Temperature = 26.9C, Rel. Humidity = 7.7%
```

Figure 14. Correct start-up message

Check the humidity with the following command "thread" in Camserver. This reads and displays the actual temperature and humidity of all sensors as shown above.

7 Getting Started

Before operating the detector, make sure you have read the previous chapters in the technical specification and the user manual.

Check these items before turning the detector system on:

- Mount the detector properly
- Connect the detector to power
- Connect the detector to nitrogen or dry air at the recommended flow rate
- Connect the water tubes. Make sure they are properly mounted on both sides
- Connect the PC and the detector data cables
- · Attach monitor and keyboard to the computer

7.1 Startup Sequence

- Turn on Nitrogen or dry air flow at least 30 minutes before turning on the detector
- Turn on the PC
- Start a shell
- The default path is: /home/det
- Change the directory to: p2_det
- Turn on the power switche at the back-side of the detector
- Turn on the cooling unit at the same time as the detector is started
- Type runtvx Runtvx starts a script file which initializes the detector system and opens the Camserver and TVX windows

7.2 First Commands

See the detailed description of all commands in the User Manual. Type the following commands in TVX:

- *rbd*; self test of the detector (digital part of the pixel)
- calibdet; self test of the detector (analog part of the pixel)
- cam setthreshold 5900 (example for a setthreshold of 5.9 keV): sets the energy threshold of the detector. It is important that a threshold is set. Otherwise the detector is not trimmed. In normal operation, the threshold should always be set to 50% of the energy of the incoming X-rays. See user manual for more information!
- expose 10; creates an image with an exposure time of 10 seconds

8 Turning off the Detector

- Turn off cooling system
- Turn off the power switch of the detector
- Do not remove Nitrogen/dry air connection and leave it at the recommended flow rate according to section 5.4.

9 Storing the Detector

Even if the detector is not in operation, it is recommended to maintain the Nitrogen or dry air flow.

In case the detector is stored, please follow these instructions:

For storage of up to 1 week:

Store the detector in the storage box and add 200 g drying agent (i.e. silica gel) into the storage box.

For storage longer than 1 week:

Pack the detector into a plastic bag, add drying agent into the plastic bag and seal the plastic bag.

Then place the detector in the storage box and add 200 g drying agent (i.e. silica gel) to the storage box.

Check the humidity inside the box frequently to comply with the storage requirements in chapter 3.2

10 Cleaning and Maintenance

The housing can be cleaned with a soft tissue.

The Mylar ® foil should not be touched or cleaned

The PILATUS 1M detector system is almost maintenance free.

The following procedures have to be done periodically:

What	When	Who
Check and, if necessary, clean the air filter on the back of the PILATUS 1M	Every month	User
Replace the air filter on the back of the PILATUS 1M	Every 12 months	User
Check the tightness of the cooling tubes	Every week	User
Replace the cooling liquid	Every 12 months	User

Figure 15. Air filter on the back of the detector

11 Faults

Problems	Causes	Solution
PC doesn't start properly	 PC is not properly powered up PCI card is not properly mounted 	 Depending on the type of the PC, there are switches on the back and on the front of the PC which have to be in the correct position. Open the PC and check that the PCI cards are properly mounted and tightened
Detector shuts down	Temperature or humidity error See section 6 for shut down values. Check the LEDs on the back of the detector: If the temperature and the power LED is red, a temperature or humidity error has occurred	 Wait until the detector cools down Restart the detector again. Check the temperature of the detector with the command in camserver: type"thread" Check that the ventilator of the detector is running properly and the ventilation holes are not covered Check the flow of nitrogen or dry air
Detector shuts down	Over current Threshold level set too low and the detector starts oscillating	 Increase the threshold level: In TVX type: setthreshold midg 5000
Images look strange after initialization	Detector is not properly initialized	Run the following commands in TVX: • setdac • calibdet • expose 1
After a trigger command has been issued camserver reports an error	After issuing the trigger command in camserver a trigger has to occur within 15/8 seconds	Make sure the trigger command occurs within 15/8 seconds
Detector housing is humid	Temperature of the cooling unit to low	Shut down the detector immediately and check the temperature of the cooling unit
Detector housing is humid	Ambient humidity around the detector exceeds the operating conditions	Shut down the detector immediately and check the humidity. Power up the detector only when the ambient humidity has been reduced

12 Certification Tests

The product is in conformity with the listed standards.

Applied standards / Normes appliquées / Verwendete Normen

EN 61000-6-2: 2005 (IEC 61000-6-2: 2005)	Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments Compatibilité électromagnétique (CEM) - Partie 6-2: Normes génériques - Immunité pour les environnements industriels Elektromagnetische Verträglichkeit (EMV) - Teil 6-2: Fachgrundnormen - Störfestigkeit - Industriebereich
EN 61000-6-4: 2007 (IEC 61000-6-4: 2006)	Electromagnetic compatibility (EMC) - Part 6-4: Generic standards – Emission standard for industrial environments Compatibilité électromagnétique (CEM) - Partie 6-4: Normes génériques - Norme sur l'émission pour les environnements industriels Elektromagnetische Verträglichkeit (EMV) - Teil 6-4: Fachgrundnormen – Fachgrundnorm Störaussendung - Industriebereich
EN 61326-1: 2006 (IEC 61326-1: 2005)	Electrical equipment for measurement, control and laboratory use - EMC requirements Part 1: General requirements Matériel électrique de mesure, de commande et de laboratoire - Exigences relatives à la CEM Partie 1: Exigences générales Elektrische Mess-, Steuer-, Regel- und Laborgeräte - EMV-Anforderungen Teil 1: Allgemeine Anforderungen